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Abstract 

An exact expression for the expected value of the mean square difference of the two data sets acquired during
the IEEE 1057 Standard Random Noise Test of analog to digital converters is derived. This expression can be
used to estimate exactly the amount of random noise present which is an improvement over the heuristically
derived estimator suggested in the standard. A study of the influence of stimulus signal amplitude and offset on 
the existing estimator is carried out. 
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1. Introduction 
 

Knowledge of the amount of random noise in an analog-to-digital converter (ADC) is 
important for an engineer designing an electronic circuit containing an ADC used to measure 
a given quantity. This knowledge allows the proper choice of amplification and filtering to 
use in order to minimize the effects of noise. Knowing the amount of random noise is also 
very important in ADC testing in two instances: first, when noise itself is used as the stimulus 
signal [1, 3] and its standard deviation has to be accurately controlled; and second, when it is 
required to compute the uncertainty of the estimation results, be it in the Histogram Test [4, 
5], the Ramp Vernier Test [6], or aperture uncertainty test [7], for instance. In signal 
processing, where sinusoids are fitted to experimental data points, the value of random noise 
present can be used to compute the bias [8] and precision [9] of its parameters, like amplitude. 

The random noise present in an ADC can be estimated by acquiring two sets of samples 
and computing the mean square difference between them as suggested in the IEEE 1057-2007 
Standard for Digitizing Waveform Recorders [10] and the IEEE 1241-2000 Standard for 
Terminology and Test Methods for Analog-to-Digital Converters [11]. In both sets the 
stimulus signal has to be the same for each sample in order for the computed difference to 
eliminate its influence and leave only the effect of random noise. The natural choice of an 
input signal is a null voltage. This approach however does not work when the random noise 
present in the ADC is small when compared with the quantization step since the samples 
acquired will all have the same value. The computed mean square difference will be zero and 
consequently a poor estimator of the random noise. In these situations a triangular stimulus 
signal is used and the acquisition is triggered by it in order for the value of the stimulus signal 
of each sample to be the same so that it can be eliminated when subtracting the two sets. 

Both IEEE standards suggest an empirically derived expression to be used as estimator for 
the amount of random noise present. This estimator, in certain conditions, may have a large 
bias, as will be shown later. In [12] the precision of the estimator was studied and an 



analytical expression was derived. Here a new way of estimating the amount of noise present 
is proposed. Although more complex, it provided more accurate results.  

We start by determining the exact expression for the expected value of the mean square 
difference, given any value of the stimulus signal amplitude, offset and ADC random noise 
standard deviation (Section 2). This expression will be used to determine the error of the 
heuristically derived estimator used in the IEEE 1057-2007 Standard (Section 3). The 
theoretical study carried out will then be used to show how to compute an accurate estimate of 
the ADC’s random noise standard deviation (Section 4). This is a complex procedure which 
requires the exact knowledge of stimulus signal amplitude and offset and is advantageous 
when very accurate estimations are required. 

 
2. Theoretical Analysis of the Mean Square Error 
 

Random additive noise in ADCs, as described in [1], is a non-deterministic fluctuation of 
the ADC output and is described by its frequency spectrum and statistical properties. It is 
usually considered that the noise present is white (flat frequency spectrum), presenting a 
stationary probability density function and that the noise is additive and independent of the 
stimulus signal. 

Due to the presence of random noise at the ADC input, the output code (k) can be 
considered a discrete random variable which can assume any value between 0 and 2 1bn −  for 
a  nb-bit ADC. Its statistical properties will depend on the ADC quantization step, Q, and on 
the amount of random noise, namely, on the value of random noise standard deviation σr.  

By acquiring two sets, ka and kb, of M samples each and computing the means square 
difference (or error): 
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it is possible to estimate the standard deviation of the random noise present in the ADC. In the 
following we will show how to do this.  

The two sets of samples acquired are triggered at the same input voltage and thus the value 
of the stimulus signal for each sample will be the same in both sets. The random noise, 
however, will be different in each set (ra and rb) which will lead to different output codes. 
The output codes for both sets, ka ad kb will be given by:  
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The output codes can also be defined by: 
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where jaν  and jbν  are the quantization errors which are equal to the fractional part of the 
input voltage yj: 
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Inserting (3) into (1) allows us to express the mean square difference as a function of the 
random noise and quantization error of the M samples.  
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Calculating the square leads to: 
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We are interested in determining the expected value of mse. To achieve that, we note that 

the random noise of the two sets is independent and that they have a null mean: 
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Note that this does not take into account the fact that ADC nonlinearity can influence the 
statistical distribution of the random noise after quantization. 

We can also state that the quantization error of a given sample in one set is independent of 
the value of the random noise of the same sample in the other set: 
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Also, since the two sets are statistically identical, we have: 
 

 { } { }j j j jE ra a E rb bν ν= . (9) 
 

The expected value of mse is then: 
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The random noise can be considered stationary and thus all the terms in the summation are 
equal which allows us to write: 

 

 { } { } { } { }2 22 2 2 4rE mse E a E a b E ra aσ ν ν ν ν= + − ⋅ + ⋅ . (11) 
 

To compute the expected values in (11) we will make use of the characteristic function 
which is another way of describing a random variable more suitably than the probability 
density function when we have sums of random variables. By definition, the characteristic 

function ( )x uΦ  of a random variable x is the expected value of variable juxe . The 
characteristic function of the quantization error ν is (see 13] (5.10), for a similar situation but 
without additive noise): 
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where 2πΨ =  and n represents noise which is uniformly distributed in the interval 
]−1/2 ; 1/2]. Note that if the stimulus signal is such that its characteristic function yΦ  in (12) 
ull for every l different than 0, then we just have ( ) ( )nu uν ν νΦ = Φ  which means that in such 
conditions the quantization error can be considered a uniformly distributed random variable 
[14]. 



From the characteristic function in (12) is possible to determine the second moment of the 
quantization error ([13], eq. (3.9)): 
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Inserting (12) into (13) leads to: 
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The characteristic function of the uniformly distributed variable n is ([13], eq. (I.82)): 
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Its second derivative is ([13], eq. (I.84)): 
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Using this we can compute the derivative in (14): 
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which can be simplified into: 
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The characteristic function of a normally distributed variable, like the random noise here, 
with null mean and standard deviation σr is: 
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The characteristic function of the stimulus signal depends on the shape of the signal. For a 
triangular signal with amplitude AQ and offset CQ, in LSB, one has: 
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Inserting (18), (19) and (20) into (14), allows the computation of the second moment of the 
quantization error as a function of stimulus signal amplitude and offset and the random noise 
standard deviation. 
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To compute the third term in the right member of (11) it is necessary to know the joint 
characteristic function of the quantization error (see [13], eq. (9.4), for a similar situation but 
without additive noise): 
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The uniformly distributed random variables na and nb are independent and their joint 
characteristic function is just the product of their individual characteristic functions. The same 
is valid for the random noise ra and rb. As such we can write (22) as: 
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The expected value of the product of νa by νb can now be computed from this 

characteristic function. 
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Inserting (23) leads to: 
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where we have used the fact that (see [13], eq. (I.83)): 
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Using (20) we can write: 
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The forth term in (11) is computed from the joint characteristic function of the quantization 
error and random noise. 
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The expected value of rν is: 
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Inserting (28) leads to: 
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Using (19) one has: 
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Inserting (31) and (26) into (30) leads to: 
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Using (20) we can write: 
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It is now possible to exactly compute the expected value of the mean square error by 
inserting (21), (27) and (33) into (11): 
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Note that the complex exponential of QC lΨ  is the same as ( ) ( )cos sinQ QC l j C lΨ + Ψ  which is the 
sum of an even and an odd part. In the summations the odd part cancels out leaving only its 
even part. We can thus write (34) as: 
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 In Fig. 1 we can see this expected value as a function of stimulus signal amplitude and 
offset for three different values of random noise standard deviation. The oscillations of the 
expected value with amplitude and offset are due to the “sinc” function of AQ and the cosine 
function of CQ in the characteristic function of the stimulus signal y in (20).  
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Fig. 1. Representation of the expected value of the mean square error for a triangular stimulus signal as a 
function of its amplitude (AQ) and offset (CQ) for three values of random noise standard deviation. 

 
 
From Fig. 1 it is also clear that those oscillations decrease with the stimulus signal 

amplitude. This is because the characteristic function of y has the term ( )sinc Q yA u  which 
decreases with stimulus signal amplitude. The oscillations of the expected value of mse also 
decrease with the random noise standard deviation. This comes from the negative exponential 
term of 2

rσ  in eq. (21), eq. (27) and eq. (33). As the random noise standard deviation 
increases, the exponential term tends to 0 and all the summations become null. The expected 
value of mse  becomes, from (11): 

 

 { } 2 12
12rE mse σ = + 
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which is just double the variance of the random noise plus the variance of the quantization 
error (1/12). It is double because of the two sets of samples that are subtracted in the 
computation of mse. Expression (36) is expected since for high values of random noise 
standard deviation we can consider the random noise to be statistically independent of the 
quantization error. Therefore we just have the variance of the sum of two independent random 
variables which is the sum of their respective variances. 

The value assumed by the expected value of mse for an integer AQ is the same value it 
assumes when AQ tends to ∞ as seen by the dashed line in Fig. 2. 

This can also be seen in Fig. 3 where we have plotted the expected value of the mean 
square error as a function of random noise standard deviation for different values of stimulus 
signal amplitude ranging from 0 to 1 LSB.  Note that for higher values of AQ the range 
covered is the same as seen in Fig. 2. For values of 2

rσ  greater than 0.5 LSB we see that the 
expected value of mse does not change significantly with AQ. 

The solid line in Fig. 3 represents the case when the stimulus signal amplitude is a multiple 
of the quantization step of the ADC (AQ integer).  

 



 
 

Fig. 2. Representation of the expected value of the mean square error as a function of stimulus signal 
amplitude (AQ). The dashed line is an approximation to the envelope of the expected value. 

 
 

 
 

Fig. 3. Representation of the expected value of the mean square error as a function of the random noise standard 
deviation for different values of triangular stimulus signal amplitude ranging from 0 to 1 LSB (dotted lines). The 

solid line represents the case where AQ = 1 LSB. 
 
 
3. Error of the IEEE 1057-2007 Standard estimator 
 

Having determined an exact expression for the expected value of the mean square 
difference as a function of stimulus signal amplitude, offset and the ADCs’ random noise 
standard deviation, it is now possible to compute the expected value of the estimator used in 
the IEEE 1057-2007 standard [10]: 
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The expected value of this estimator can be approximated by: 
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We now define the error of the estimator as the difference between its expected value and 

the actual value of the standard deviation of random noise present: 
 

 r r reσ σµ σ= − . (39) 
 

Fig. 4 represents the estimation error of the random noise standard deviation as a function 
of the actual random noise standard deviation for different values of triangular stimulus signal 
amplitude ranging from 1 to 2 LSB (thin lines). The thick line represents the maximum value 
approximation valid for AQ > 1 LSB. 

In Fig. 5 a more limited range of values of noise standard deviation is shown (from 0 to 1 
LSB). It can be seen, for example, that for a random noise standard deviation of 0.2 LSB the 
estimation error could be greater than 0.03 LSB which is a relative error higher than 15% (for 
values of stimulus signal amplitude greater than 1 LSB). 

 
 
 

 
Fig. 4. Representation of the estimation error of the random noise standard deviation as a function of the actual 
random noise standard deviation for different values of stimulus signal amplitude ranging from 1 to 2 LSB (thin 

lines). The thick line represents the maximum value approximation valid for AQ > 1 LSB. 
 
 



 
 

Fig. 5. Representation of the estimation error of the random noise standard deviation as a function of the actual 
random noise standard deviation for different values of stimulus signal amplitude ranging from 1 to 2 LSB (thin 

lines). The thick line represents the maximum value approximation valid for AQ > 1 LSB. 
 
 

  
 

Fig. 6. Representation of the estimation error of the random noise standard deviation as a function of the actual 
random noise standard deviation for different values of triangular stimulus signal amplitude ranging from 10 to 

11 LSB (thin lines). The thick line represents the maximum value approximation valid for AQ > 1 LSB. 
 
In Fig. 6 a case for higher values of stimulus signal amplitude is depicted showing the 

smaller estimation error in these circumstances. 
 
4. Estimating Exactly the Amount of Random Noise 
 

As seen in the previous section, the expected value of the mean square error can be 
computed using (35) for a given value of random noise standard deviation. This will give an 
unbiased estimation of the random noise if the stimulus signal’s amplitude and offset are 
known. Since there is a one-to-one relation between the expected value of the mean square 
error and the random noise it is possible to use the measured mean square error and obtain an 



estimate of the random noise standard deviation by solving (35) for 2
rσ . This has to be done 

numerically since there is no analytical expression for it. This can be done with a computer, 
limiting the computation of the summations in (35) to a finite number of terms. This is 
possible, since the terms of the summations become smaller as the index variables (l, l1 and l2) 
grow. In Fig. 7 we show the estimation error for three different values of P where +P and –P 
are the limits of the summations. As we can see, a value of 30 is good enough for all practical 
situations. The computational burden of numerically solving (35) with 30 terms in each 
summation is negligible for modern computers (less than 100 ms). 

Note that the estimation error decreases with increasing random noise standard deviation 
since the terms in the summations depend on 

2
re σ− . For values of rσ  greater than 0.2 LSB 

even P = 1 is enough. 
Using only one term in the summations in  (35) leads to a simpler expression: 
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Looking at Fig. 7 one can see that for values of noise standard deviation higher than 
0.1 LSB the error incurred in using (40) instead of (35) is lower than 0.005 LSB. 

 

0 0.05 0.1 0.15 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

σ
r
 (LSB)

e σ
r (

L
SB

)

A
Q

 = 1 LSB       C
Q

 = 0.5 LSB

^

P = 30

P = 2

P = 1

 
 

Fig. 7. Representation of the error in estimate of the random noise standard deviation due to the computation of a 
finite number of terms (P) in the infinite summations of eq. (21), (27) and (33). 

 
5. Conclusions 
 

In this paper an exact expression for the expected value of the mean square difference of 
the two data sets acquired in the 1057-2007 Standard Random Noise Test of ADC was 
derived (expression (35)). This expression was used to show the bias of the IEEE 1057-2007 
Standard heuristically derived estimator and to propose a new way of estimating the amount 
of random noise present which gives unbiased results. The increased computational burden 
may be justified when accuracy is paramount.  



The advantage of using the expression presented here, in terms of accuracy, is most 
significant when the amount of random noise is smaller than 1 LSB. In practice this situation 
is encountered in fast, low resolution ADCs used, for instance, in telecommunications. 
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